
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2010; 00:1–20
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

A LoCATe-based Visual Place Recognition System for Mobile
Robotics and GPGPUs

L. Bampis1∗, S. A. Chatzichristofis2, C. Iakovidou1, A. Amanatiadis1,
Y. S. Boutalis1 and A. Gasteratos1

1 School of Engineering, Democritus University of Thrace, GR-67132, Xanthi, Greece
2 Neapolis University, Department of Information Science, CY-8042, Paphos, Cyprus

SUMMARY

In this paper, a novel visual Place Recognition (vPR) approach is evaluated based on a visual vocabulary
of the Color and Edge Directivity Descriptor (CEDD) in order to address the loop closure detection task.
Even though CEDD was initially designed so as to globally describe the color and texture information of an
input image addressing Image Indexing and Retrieval tasks, its scalability on characterizing single feature
points has already been proven. Thus, instead of using CEDD as a global descriptor, we adopt a bottom-
up approach and utilize its localized version, Local Color And Texture dEscriptor (LoCATe), as an input
to a state-of-the-art visual Place Recognition technique based on Visual Word Vectors. Also, we employ a
parallel execution pipeline based on a previous work of ours using the well established GPGPU computing.
Our experiments show that the usage of CEDD as a local descriptor produces high accuracy vPR results,
while the parallelization employed allows for a real-time implementation even in the case of a low-cost
mobile device. Copyright c© 2010 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Visual Place Recognition; Image Description; Mobile Robotics; GPGPU Computing

1. INTRODUCTION

The subject of visual Place Recognition (vPR) refers to the task of a robot to recognize scenes/places
that has encountered in the past using only visual sensors. Due to its generic nature, vPR can be
applied on a variate of mobile robotic applications, one of which is the loop closure detection
task. In the context of graph-based Simultaneous Localization and Mapping (SLAM), a loop
closure detection engine is responsible for detecting revisited regions of a robot’s trajectory and
create additional edge constraints between the corresponding pose nodes [1, 2, 3]. Using this
supplementary knowledge, the overall SLAM output can be further improved leading to a more
accurate overall representation of the traversed route and the observed environment [4, 5].

Due to its demanding nature, the subject of loop closure detection has received great attention
during the last decade leading to a vast variety of approaches. Considering the type of data that they
associate, loop closure detection approaches can be divided into the following tree categories: map-
to-map, map-to-image and image-to-image [6]. In the first category, revisited scenes are identified by
finding correspondences between the appearance and the relative position of the detected features.
In the second category, the correspondences are extracted between the current input image and a
3-dimensional representation of the already seen word. Finally, the methods that fall into the last
category (also referred to as “appearance based place recognition”) are proven to scale better on long
trajectory cases and create associations only between the features that the input images contain.

∗Correspondence to: lbampis@pme.duth.gr

Copyright c© 2010 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]



2 L. BAMPIS, ET AL.

In the general case of appearance based place recognition, the model of Bags of Visual Words
(BVW) is applied. Local feature descriptors are extracted from every input image and converted into
visual words quantizing the vectors’ space. Then, each one of those words votes on the respective bin
of a common histogram/visual-word-vector (VWV) creating a description footprint for each input
frame. Thus, a loop closing pair of images can be distinguished by calculating vector distances
between the currently obtained (query) VWV and all the previously acquired (database) ones. This
technique was first applied in order to address the problem of Image Retrieval [7], yet in the case of
loop closure detection, time proximity is also employed in order to assist image matches that persist
over time.

Two of the greatest and most acknowledged examples in the field of appearance based place
recognition are FAB-MAP [8] and its sparse approximation, FAB-MAP 2.0 [9]. Both of those
methods were based on co-occurrence probabilities between the obtained visual words and provoked
thought for a vast variety of other approaches. Angeli et al. in [10] based their description on two
visual vocabularies (SIFT features and color histograms) taking into account the matching Bayesian
probability from previously acquired images. Aiming to speedup the quantization of the feature
description vectors, Schindler et al. [11] used a tree-based representation of the formulated visual
vocabulary (vocabulary tree) and drastically reduced the computations required for identifying the
corresponding VWVs. More recent techniques, instead of adopting a probabilistic method, enforced
a temporal consistency constraint between the detected loop closing pairs of camera measurements.
One representative example of this approach was described by Gálvez-López and Tardós in [12],
with their algorithm DBoW2 [13]. Mur-Artal and Tardós [14], in a later work, made use of DBoW2
in order to recognize places, relocalize and detect loop closure events in a real-time key-frame
SLAM system.

Recently, in order to provide execution time efficiency in the loop closure detection task, parallel
programming have been applied based on GPGPU computing. In Collier et al. [15] work, features
from both the image and the 3-dimensional measurements of a range sensor were utilized so as to
detect revisited scenes. In their case, the GPU undertook the extraction of VD-LSD vectors using a
parallel algorithm for describing feature points. Another vPR approach that utilizes a GPU for the
calculations is described in [16], where the characterization of the individual frames was based on
an average representation of local feature descriptors. In that case, the parallelization referred to the
distance calculations in the feature vector space.

In the approaches described above, it is a common practice to utilize the functionality of
traditional local feature point descriptors. Floating-point descriptors, like SIFT [17] or SURF [18],
have proven to be very effective so as to characterize the content of a given feature point in a huge
variety of applications. Moreover, with the aim to provide some efficiency to the calculations, great
attention has also been given to the competencies of the more modern binary descriptors, e.g. ORB
[19] or FREAK [20], which are more compact and faster to formulate and match. Those methods
induce a bottom-up approach for the loop closure detection task since the created VWVs can be
characterized as global description vectors obtained from the properties of local feature points.

Lately, the robotics’ community turned its attention to the task of long-term visual navigation
[21, 22] as well, which requires vPR methods capable of identifying revisited trajectory regions
under extreme environmental/appearance changes. Those techniques need to deviate from the
aforementioned bottom-up notion, sacrificing some of their invariance over the camera’s viewpoint
changes [23]. In general, methods that fall into this category holistically describe each image without
considering the individual local features that compose it. A great example of such an approach
was introduced by Arroyo et al. in [24]. Their system characterized sequences of illumination
invariant images by using a concatenated and global version of the “Local Difference Binary” (LDB)
descriptor [25]. The same sensitivity to the observation viewpoints can be found in another family
of algorithms that base the image description on the application of Convolutional Neural Networks
(CNNs) [26]. In the general case, a CNN trained for object detection is applied to the whole image,
while the output of a specific convolutional layer is used as a description vector. Sünderhauf et al.
[27] performed an evaluation of the AlexNet [28] network and tested each layer’s robustness under
appearance and viewpoint changes. The obtained results revealed that different layers perform better

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe



A LOCATE-BASED VISUAL PLACE RECOGNITION SYSTEM FOR MOBILE ROBOTICS AND GPGPUS 3

for different kinds of changes eliminating the possibility of a holistic solution. To cope for that,
the same group of authors later proposed a vPR system [26] that firstly detected visual landmarks
in a given image and then used the output of a specific CNN layer (preserving invariance over
the appearance changes) to describe them. Although this example provided some robustness over
both appearance and viewpoint changes, it suffered in terms of computations due to the complexity
of the adopted landmark detection algorithm. Finally, Arroyo et al. [29] proposed a CNN-based
vPR system that simultaneously utilized the information from different convolutional layers by
concatenating their output into a single description vector. This concatenation offers another way
for introducing some invariance over both environmental and viewpoint changes at the expense of
increasing the matching functionality’s complexity. The authors in [29] reduced some of the extra
computations by shortening and quantizing the description vector.

In this work, we are interested in addressing the loop closure detection subclass of the vPR
problem. Our goal is to offer a real-time application capable of detecting revised scenes from a freely
moving hand-held camera even in the case of a low power device. For these reasons, the choice of
BVW was adopted as a more intertwined with the overall SLAM problem solution. By utilizing
the VWV-based approach, our algorithm is also capable of producing the necessary for SLAM
local feature descriptors and fundamental matrices undertaking some of the necessary odometry
computations.

We propose for the first time the inclusion of an alternative description algorithm capable of
characterizing both color and texture information of a given feature point, i.e. the “Color and Edge
Directivity Descriptor” (CEDD) [30]. Even though this algorithm was initially designed so as to
describe a given image as a whole, recently its capability of describing local feature points was
proven as well. As shown in Iakovidou et al. work [31], the localized equivalent of CEDD, referred
to as Local Color And Texture dEscriptor (LoCATe), outperformed the matching accuracy of many
other descriptors, like SIFT or SURF, for Image Retrial purposes. In addition to the promising local
description capabilities, CEDD also presents great parallelization properties and thus allows for a
real-time implementation. In our previous work presented in [32], we evaluated a parallel execution
pipeline, based on GPGPU computing, capable of producing global image description vectors of
CEDD on at least 25 frames per second (fps), even in the case of a low-cost hardware setup.
Extending our previous proposal, we alternate a state-of-the-art vPR method, namely DBoW2,
and use LoCATe feature descriptors as an input for detecting loop closure events. Furthermore, we
reformulate our GPGPU implementation in order to the extract local description vectors introducing
an additional speedup. For our timing experiments, a mobile tablet device was used, provided by
Google’s Project Tango [33], proving the efficiency of our algorithm.

The rest of this paper is organized with the following structure. Section 2 is dedicated to the brief
description of LoCATe, the local descriptor used by our method. In Section 3, the proposed vPR
system is described in details, while Section 4 apposes some of the GPGPU terminology that we
will refer to in the rest of our proposal. Section 5 explains in details the parallelization techniques
used by our vPR algorithm. Section 6 contains the timing and accuracy evaluation of the presented
approach and finally, Section 7 draws our final conclusions and plans for future work.

2. LOCATE: THE LOCALIZED VERSION OF CEDD

This section provides a brief presentation of the structural elements of the LoCATe. For a more
detailed description, kindly refer to [31]. LoCATe is the localized extension of CEDD, generated
through the combination of a local-point detector and the CEDD global descriptor.

2.1. The Detection Stage

Given an input image, the SURF detector is employed to locate points of interest. The SURF detector
works on achromatic information and uses the determinant of the Hessian (approximated using a set
of box-type filters) to detect both the location and the scale of blob-like structures. After locating a
point using the detector, a square patch is marked on the image around it, whose size is determined

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe



4 L. BAMPIS, ET AL.

6 Texture Regions 

24 Colors 

7 
6 
5 
4 
3 
2 
1 
0 

(a) Descriptor’s structure.

Texture Unit

Digital Filters
Texture

Classification

Color Unit

10-Bin Fuzzy
Linking

24-Bin Fuzzy
Linking

Each Image
Block

+ Quantization

Y

HSV

(b) Implementation flowchart.

Figure 1. LoCATe overview.

by the scale it was detected in by SURF. By the end of the detection stage, the image is represented
by patches varying in size, on which the CEDD descriptor is applied, as if they were standalone
images.

2.2. The Description Stage

LoCATe is capable of quantifying both color and texture attributes of a given patch. The original
CEDD implementation demands a division of the image patch into 40×40 Blocks of at least 2×2
pixels each. However, the latest version of CEDD† adapts to the description of smaller sized image
patches and defines a minimum of 20×20 Block division of at least 2×2 pixels each. Thus, in
our case, 400 Blocks are produced for each detected image patch and forwarded to the two main
information extraction units, i.e. the Color and the Texture Extraction Units. The corresponding
information vectors are then combined and quantized into 8 predefined levels in order to produce
one final local descriptor, as the one presented in Fig. 1a.

2.2.1. Color Extraction Unit: As depicted in Fig. 1b, each detected patch enters the Color Unit
after its RGB (Red, Green, Blue) values are converted into the HSV (Hue, Saturation, Value) color
space. Then, a two-staged fuzzy system is employed to produce a Fuzzy Linking histogram. Linking
is defined as the combination of more than one histograms to a single one [34]. The first stage of the
fuzzy system has the three mean HSV channels of an Image-Block as inputs and forms a 10-bins
histogram output. The three inputs of the fuzzy system are described as follows: H is divided into
8 fuzzy areas, S is divided into 2 fuzzy regions, while the channel V is divided into 3 areas (kindly
refer to Fig. 2). The output of the fuzzy system is enabled by a set of 20 rules and returns a crisp
value ranging from 0 to 1 (TSK like fuzzy system) to produce the 10-bins first-stage histogram. The
first three bins represent Black, Grey and White, respectively, while the rest seven bins represent a
preset color each.

The second-stage fuzzy linking system (TSK) is responsible for adding the brightness value to
the seven colors (Black, Grey and White are not computed). Again the S and V mean values of an
image patch’s Block become fuzzy inputs, as illustrated in Fig. 3. The output is a 3 bin histogram
of crisp values, indicating if the color will be characterized as light, normal or dark-hued.

The two outputs (first and second stage histograms) are combined and the final 24-bin Color
Histogram is produced. Each bin represents a color as follows: (0) Black, (1) Grey, (2) White, (3)
Dark Red, (4) Red, (5) Light Red, (6) Dark Orange, (7) Orange, (8) Light Orange, (9) Dark Yellow,
(10) Yellow, (11) Light Yellow, (12) Dark Green, (13) Green, (14) Light Green, (15) Dark Cyan,
(16) Cyan, (17) Light Cyan, (18) Dark Blue, (19) Blue, (20) Light Blue, (21) Dark Magenta, (22)
Magenta, (23) Light Magenta.

2.2.2. Texture Extraction Unit: In parallel with the Color Unit, image patch’s Blocks enter the
Texture Unit, after being converted to the grayscale color space. For the extraction of the texture
information, the method employs the five digital filters proposed by the MPEG-7 Edge Histogram

†The latest version of CEDD can be found in http://tinyurl.com/CEDD-Descriptor.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

http://tinyurl.com/CEDD-Descriptor


A LOCATE-BASED VISUAL PLACE RECOGNITION SYSTEM FOR MOBILE ROBOTICS AND GPGPUS 5

(a) H channel’s membership function.

0 1

1

0
0 64 128 192 256

(b) S channel’s membership
function.

10 2

1

0
0 64 128 192 256

(c) V channel’s membership
function.

Figure 2. Membership functions used in the first stage of the fuzzy system [34].

0 1

0 64 128 192 256

1

0

(a) S channel’s membership
function.

0 1

0 64 128 192 256

1

0

(b) V channel’s membership
function.

Figure 3. Membership Functions used in the second stage of the fuzzy system [34].

Descriptor-EHD [35] which represent five broadly grouped edge types: vertical, horizontal, 45
diagonal, 135 diagonal and isotropic (non-directional) as shown in Fig. 4a, along with an additional
Non-Edge filter. In order to employ the filters, each Block must be subdivided into four Sub-
Blocks. The value representing each Sub-Block is the mean value of the luminosity (Y) of the
pixels consisting the Sub-Block.

The digital filters are applied and the obtained responses became inputs to the fuzzy mapping
scheme, illustrated in Fig. 4b. In its essence, this mapping system is responsible for indicating
which kinds of edges are present for every Block. Please note that more than one edge types can be
simultaneously present.

The normalized maximum responses (edge magnitudes) from the applied filters (per Block) are
placed in the heuristic pentagon diagram (Fig. 4b). Each value is placed along the line that pertains
to the filter it emerged from. If that value is greater than the corresponding line’s threshold, the
Block is classified in the respective type of edge. If none of the five thresholds are met, the Block is
categorized as Non-Edge.

The Texture Unit produces a 6-bin vector output for each Block. Every bin represents one of the
five employed textures, while the first bin represents the Non-Edge case. When an edge type was
found present in a Block the corresponding bin is marked with “1”. Otherwise, it is marked as “0”,
producing the binary texture vector.

2.2.3. Producing the LoCATe descriptor: When the 24-bins Color Histogram and the 6-bins texture
vector have been calculated, the two are combined and a 144-bins vector for every image patch’s
Block is generated as follows: the bins are divided into six regions (that represent a different texture)
of 24-bins each. According to the Block’s texture vector, and for those of its bins that were marked
as “1”, the respective region in the 144-bins vector is filled with the calculated 24-bins Color
Histogram. Then, all Block descriptors are added to form the patch’s descriptor. This vector is
normalized and quantized into 8 predefined levels. On completion, the LoCATe descriptor has been

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe



6 L. BAMPIS, ET AL.

1

1 -1

-1

vertical

1

-1 -1

1

horizontal

√2

0

0

45 diagonal

√2

2

-2 2

-2

non-directional

0 −√2

45 diagonal

0−√2

(a) Filter Coefficients for
Edge Detection.

0

0

0 0

0

1 T1T1

T2
T2

T0

(b) Edge Type Diagram
(Heuristic Pentagon Diagram).

Figure 4. Edge Histogram Descriptor-EHD.

formed and characterizes the visual content of the corresponding patch in a compact and distinct
fashion.

3. VISUAL PLACE RECOGNITION: LOCATE-BASED DBOW2

As mentioned before, in this paper we utilize a bottom-up image description approach in order
to address the loop closure detection problem. Thus, we chose the well-established algorithm of
DBoW2 and we replace its binary visual vocabulary with a LoCATe-based one. The main objective
of DBoW2 is to create a VWV for every input image using a tree-based BVW of L = 6 levels and
K = 10 branches per node. In [12] an off-line training step is necessary in order to formulate the
required vocabulary tree using the binary description of BRIEF [36]. With the aim to change the
local feature description, we are obligated to alternate this off-line step as well. In this work, the
most prominent 300 feature points from each one of the 30K indoor and outdoor samples of Bovisa
2008-09-01 [37] dataset, indicated by the SURF detector, are described using LoCATe. This generic
set of descriptors is used as an input to a k-means hierarchical clustering with k-means++ seeding
[38]. The leaf nodes of the created tree represent the final vocabulary with a total size of W = KL

visual words.
Given an input frame I , the strongest 512 SURF feature points are extracted (this number

will be rationalized in the sections bellow) and converted into description vectors using LoCATe.
Using the tree structure of our visual vocabulary, each one of the obtained local descriptors is
converted into a visual word using only K ∗ L comparisons. With the new set of 512 visual
words, each frame is assigned with one global image descriptor (VWV), the respective bins
of which denote a weighted existence (or not) for each member of the visual vocabulary. This
vector (v̂(I) = [v

(I)
1 , v

(I)
2 , ..., v

(I)
i , ..., v

(I)
W ]) is created using the “term frequency-inverse document

frequency” (tf-idf) [39] using:

v
(I)
i =

N
(I)
i

N (I)
log

N (D)

Ni
(1)

where N
(I)
i represents the number of occurrences of the visual word i in image I , N (I) the total

number of visual words in image I , N (D) the total number of visual words in the training dataset
and finally Ni represents the total number of occurrences of the i-th word in the training dataset.

After the extraction of the VWVs, DBoW2 asserts a loop closure when a set of requirements
are met, as described in the rest of the paragraph. Firstly, normalized L1-scores (n-scores) between
the query (v̂(I)

q ) and all the previously acquired database images (v̂(I)
d ) that contain some common

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe



A LOCATE-BASED VISUAL PLACE RECOGNITION SYSTEM FOR MOBILE ROBOTICS AND GPGPUS 7

words are calculated using:

L1

(
v̂(I)
q , v̂

(I)
d

)
= 1− 0.5

∣∣∣∣∣∣ v̂
(I)
q∣∣∣v̂(I)
q

∣∣∣ − v̂
(I)
d∣∣∣v̂(I)
d

∣∣∣
∣∣∣∣∣∣ (2)

n
(
v̂(I)
q , v̂

(I)
d

)
=

L1

(
v̂(I)
q , v̂

(I)
d

)
L1

(
v̂(I)
q , v̂

(I)
q−1

) (3)

where v̂(I)
q−1 denotes the VWV that corresponds to the most similar with query image one can find in

the database, i.e. the previous one. The database images achieving higher scores than a predefined
threshold thn form a subset of matching candidates. This subset is later divided into groups based
on the images’ time-intervals, forming islands of images. Islands are assigned with a new score
created by the accumulation of their members’ ones, while the highest scoring island is considered
to contain the possible image candidates for loop closure. As in [40], a temporal consistency check
is also applied, which eliminates matches between query images and islands not being consistent
for at least k time-intervals. This essentially means that an image-to-island match (image i with
island j) needs to persist in appearing for the last k time-intervals (images from i− k to i with
islands from j − k to j), with the islands containing some overlapping regions. Lastly, a geometrical
constraint needs to be checked so as to accept a loop closure event. A match between the query
image and a member of the chosen island will be accepted if more inliers than a minimum threshold
(thR) can be found during the estimation of the fundamental matrix using a RANSAC scheme. In
order to provide computational efficiency direct indexing is applied, which associates the features’
corresponding visual words to the tree’s parent nodes. This indexing reduces the candidates of the
feature-to-feature matching from the two images, since only features that share the same parent, at
a certain level of the tree (l = 4), are going to be checked. For a more detailed explanation of the
DBoW2 algorithm please refer to the description of the original paper [12].

4. GPGPU TERMINOLOGY

In this work, we utilize CUDA [41], the general purpose parallel computing architecture introduced
by NVIDIA, as a means for assigning calculations to the GPU. Thus in this section, a small
description of the terms used in the rest of the paper is provided.

Concerning the two main processing units of a computing setup, the CPU is referred to as Host
while the GPU as Device. The GPU unit contains a number of multi-cores or multiprocessors (MPs).
Each MP complies with a “Single Instruction on Multiple Threads” (SIMT) architecture‡, meaning
that the respective sub-processors are restricted on executing the same instruction at every clock
cycle. Violating the aforementioned constraint causes a serialization of the computations leaving
some sub-processors idle.

The term Grid refers to a set of Thread Blocks, while every Thread Block is a set of Threads.
From the software point of view, Threads are responsible for providing the instructions to the sub-
processors of a given MP. It is important to also note here that the Grids and the respective Thread
Blocks can be mentally arrange in one, two or three dimensional structures (x, xy or xyz respectively)
to make the coding design straightforward. The Host is responsible for determining the arraignment
and size of the respective Grids/Thread Blocks that are going to execute a specific function (Kernel)
on the Device, while the maximum number of Thread Blocks in a Grid and Threads per Thread
Block is defined by the GPU model. Given a specified Kernel, the respective Threads are combined
into groups (Warps) of 32 members. A Warp is the fundamental execution unit that performs one
instruction over all its Thread-members, thus it is a common practice to create Thread Blocks of size
r × 32 (r ∈ N+) in order to occupy the whole GPU.

‡SIMT is an extension of the more traditional “Single Instruction on Multiple Data” (SIMD) architecture.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe



8 L. BAMPIS, ET AL.

Input 
Image 

LoCATe Feature Description 
 

RGB Integral Images 
Formulation 

Data Re-Arraignment 

Gray-scale Integral 
Image Formulation 

SURF Feature 
Patches Detection 

T 
X 
Y 

Size 

… … … 
… … … 

… … … 

… … … 

512 

Initialization Steps 

Color Information 
Extraction 

Average HSV per 
Patch 

512 

… … … 

… … … 

… … … 
S 

H 

V 

Texture Information  
Extraction 

4 Average Gray-
scale per Patch 

… … … 

… … … 

… … … 

… … … 

512 

Gray1 

Gray2 

Gray3 

Gray4 

10-Bin Histograms 
Formulation 

Brightness Indicator 

Brightness Indicator 

Description Histogram 
Formulation & Quantization 

LoCATe 
Descriptors 

512 

… … … 

DBoW2 

R 
G 
B 

R 
G 
B 

H
o
st

 T
h

re
ad

s’
 S

yn
ch

ro
n

iz
at

io
n

 B
ar

ri
e

r 

Host Thread 1 Host Thread 2 

144 

… 
… 
… 

… 

… 
… 

… 
… 
… 

… 

… 
… 

… 
… 
… 

… 

… 
… 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

Figure 5. The GPGPU based pipeline of the proposed vPR system. The approach can be divided into three
main processing components: (Left) the initialization steps, (Middle) the LoCATe descriptors calculation

and (Right) the loop closure detection algorithm.

A GPU has an efficient memory architecture as well, divided in global and local memories. The
Global memory can be accessed and shared among every Thread that is running on the Device. It
is also the only memory accessible by the Host, while read operations from Threads with indexes
that follow the memory alignment guidelines can be coalesced. Texture and Constant memories are
also parts of the Global memory (can be accessed by every Thread) and are cached. On the one
hand, Texture memory is read-only by the Device and optimized for 2-dimensional accesses. On
the other hand Constant memory is in general slower but does not introduce extra latencies when
the individual Threads access the same addresses simultaneously. Threads that are members of the
shame Thread Block share access to common Shared memory chunks which are roughly 100 times
faster than the Global one. Finally Registers are privet for each Thread and presents the smallest
accessing latency.

The above terms are going to be used in the description of our GPGPU-based implementation
while for a more detailed description one could refer to [42, 43].

5. GPGPU IMPLEMENTATION

In this section, our parallel pipeline is described in details. The main objective of the presented
work is the GPGPU implementation of the proposed vPR system’s back-end, e.i. the local feature
detection and description. In our previous work [32], a parallel pipeline of CEDD (the global
description ancestor of LoCATe) was described addressing the problem of real-time image indexing.
However, here we present a new and improved version taking into account the new characteristics
and implementation properties that the features’ locality induces.

This section additionally justifies our selection of LoCATe description. Considering the
required processing steps of a state-of-the-art parallel SURF features extraction method, the most
computationally demanding procedures that LoCATe requires can be counted as pre-calculated, as
to be discussed in the following subsections.

Figure 5 presents the main processing steps of our proposed implementation, all of them
efficiently design around the architectural principles of GPGPU programming. For a given input
image, some initialization pre-processing steps are required in order for our proposal to be generic
and applicable to any GPU model (viz. Data Arraignment, RGB Integral Images Formulation, Gray-
scale Integral Image Formulation and SURF Features Detection). The main difference between [32]
and this work is that the image patches to be described are no longer of a stable size. Instead, their
pixel-members multitude varies with respect to the scale that SURF detected each local feature. This
new property arises a challenge regarding the individual Threads’ workload since for an efficient
implementation, the calculations are required to be the same, regardless the size of every described

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe



A LOCATE-BASED VISUAL PLACE RECOGNITION SYSTEM FOR MOBILE ROBOTICS AND GPGPUS 9

patch. Thus, we propose an architecture based on Integral Images aiming to efficiently provide the
SURF feature points detections as well as the LoCATe description vectors.

5.1. Initialization Steps

5.1.1. Data Re-Arrangement: Given an input image, the first step of our algorithm refers to
the re-arrangement of the pixel values in such a way so as to be efficiently accessible by the
Device. Thus, a buffer in the Global memory is allocated with the same size as the input images’
resolution multiplied by three (Nrgb = W ×H × 3, W being the frame’s width, H its height
and three color channels per pixel). Since we are interested in accessing each individual color
channel independently from the other two, we need to deviate from the traditional image storage
format which uses a color-major arrangement. Looking at an image as a 3-dimensional array with
storage order [color, width, height], the required rearrangement procedure is the equivalent of a
permutation that exchanges the first and the last dimension ([width, height, color]). For this reason,
the aforementioned buffer is bound by a 3-dimensional Texture memory configured so as to provide
coalesced accesses when neighboring pixel values of the same color channel are required. This
Texture memory is bound only once while the Host is responsible for updating the buffer’s values
for each different input image in the stream. The aforementioned process is performed by a Kernel
of Nrgb Threads, while its output is three sequential buffers (Br, Bg and Bb) containing the red,
green and blue channels respectively.

5.1.2. RGB Integral Images Formulation: In order to provide a generic solution, the required by
LoCATe average color values (Color Extraction Unit) of a given patch are calculated through
Integral Images. As a reminder, each value of an Integral one-channeled Image IS is calculated
using:

IS (i, j) =

i∑
u=0

j∑
v=0

I (u, v) (4)

where I denotes the original one-channeled image. Our algorithm needs to calculate an Integral
product from each color channel and here we present the procedure of creating one of them. The
rest of the channels’ Integral products can be formulated with the exact same steps.

To efficiently acquire the ISc of a channel Ic (c ∈ {r, g, b}) we make use of the parallel algorithm
proposed by Timothy et al. [44], which refers to the 2-dimensional extension of Blelloch’s well-
established method for prefix summations [45]. As in [44] we utilize three pyramids during the
up-sweep step (upPB , upPH and upPV ) and one during the down-sweep (dnP ) in order to formulate
the prefix sum along both channel’s dimensions simultaneously. The up-sweep steps are governed
by the following equations:

upP
(k)
B (i, j) = upP

(k−1)
B (2i, 2j) + upP

(k−1)
B (2i + 1, 2j) +

+ upP
(k−1)
B (2i, 2j + 1) + upP

(k−1)
B (2i + 1, 2j + 1)

(5)

upP
(k)
H (i, j) = upP

(k−1)
B (2i, 2j) + upP

(k−1)
B (2i + 1, 2j) (6)

upP
(k)
V (i, j) = upP

(k−1)
B (2i, 2j) + upP

(k−1)
B (2i, 2j + 1) (7)

where k refers to the corresponding pyramid’s level and i, j to the indexes in axes x (horizontal) and
y (vertical) respectively. upP (k)

B contains the 2-dimensional sum of neighboring values at each layer
k, while the first pyramid level (upP (0)

B ) is initialized with the input image channel Ic. The last two
pyramids are used to compute the row-wise and column-wise summations via:

upX(k) (i, j) =

i−1∑
u=0

upP
(k)
H (u, j) (8)

upY (k) (i, j) =

j−1∑
v=0

upP
(k)
V (i, v) (9)

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe



10 L. BAMPIS, ET AL.

After reaching the highest pyramid level, the down-sweep steps of dnP pyramid are calculated by:

dnP (k) (i, j) =



dnP (k+1) (bi/2c, bj/2c) , i even, j even
dnP (k+1) (bi/2c, bj/2c) +up Y (k+1) (bi/2c, bj/2c) , i odd, j even
dnP (k+1) (bi/2c, bj/2c) +up X(k+1) (bi/2c, bj/2c) , i even, j odd
dnP (k+1) (bi/2c, bj/2c) +up X(k+1) (bi/2c, bj/2c) +

+upY (k+1) (bi/2c, bj/2c) +up P
(k)
B (i− 1, j − 1) , i odd, j odd

(10)

where bxc denotes the floor function mapping each value x to the smallest following integer.
Starting from the highest layer and moving towards layer 1, we end up with dnP (1) containing
the corresponding channel’s integral image.

The above set of equations comply with the computational guidelines of the GPGPU architecture
and require two layers of Texture memories per input channel Ic in order to provide the respective ISc .
Those Textures are binded on Global buffers only once at the beginning of our application and enable
a ping-pong access procedure avoiding the problem of read-after-write [46]. One 3-dimensional
Texture (RGB Texture) is binded on the Br, Bg and Bb buffers and plays the role of the first Texture
layer for each individual channel. The final Integral RGB Images, formulated by the above steps, are
finally stored in the second 3-dimensional layer (RGB Integral Texture) with the arraignment:
[width, height, color].

5.1.3. Gray-scale Integral Image Formulation: The calculation of the gray-scale Integral
equivalent of a given input image will highly benefit the rest of our architecture. More specifically,
both the SURF detector (application of the second-order Gaussian filter Kernel) and the LoCATe
descriptor (Texture Extraction Unit) require the calculation of the sum/average of the images’
patches in the gray-scale domain (Igray). Since the conversion between a colored image Irgb and
the respective Igray one is described by a linear transformation, the Integral gray-scale product can
be formulated directly from the ISc channels using:

ISgray (i, j) = 0.299 ∗ ISr (i, j) + 0.587 ∗ ISg (i, j) + 0.114 ∗ ISb (i, j) (11)

The created ISgray is once again stored in a dedicated Global buffer binded by a 2-dimensional
Texture cache (Gray Integral Texture) using Ngray = W ×H Threads.

5.1.4. SURF Feature Patches Detection: The SURF feature detector is based on the convolution
of a second-ordered Gaussian filter with the pixel values of a given gray-scale image. This filter is
approximated by a Gaussian box kernel and evaluated at a variety of different scale levels achieving
scale invariance. The responses of this convolution are then thresholded returning the feature point
detection on a scale-space coordination system p̂ = [i, j, s], where s refers to the scale corresponding
to the maximum response. For a more detailed description of the method, please refer to the original
paper of SURF [18].

Having the Integral image Igray pre-calculated the detection of the SURF feature points can
be very cost-effective since the Gaussian filtering can be applied on different scale levels with
negligible computational steps. For this Kernel we utilize the implantation described by [47] since
we verified its efficiency both in terms of computations and achieved accuracy. As described in
[48], the SURF algorithm has many parallelization potentials which can be categorized as follows:
(a) Block-Level Parallelization, (b) Scale-Level Parallelization and (c) Pipeline Parallelization.
Regarding the first category, the parallelization is achieved by treating every input image as a set
of individual image-blocks and concurrently checking each one of them for containing a feature
point. In the second approach, each different scaling level of SURF is computed in parallel, while
the last category refers to a pipeline scheme that separates and simultaneously executes the stages of
detection and description. Looking for a scalable solution, in [47] the fist parallelization approach
was adopted since its architectural characteristics seamlessly comply with the implementation
guidelines of a GPGPU.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe



A LOCATE-BASED VISUAL PLACE RECOGNITION SYSTEM FOR MOBILE ROBOTICS AND GPGPUS 11

As an output of this Kernel, we obtain 4 vectors stored in the Global memory containing the
detected feature points’ responses (T ), their position along x and y axes, as well as the corresponding
patch sizes. These vectors are then sorted with respect to the achieved responses and the 512
strongest ones are used for the rest of the pipeline. This sample size of local features is selected
as the closest to the one used by DBoW2 (300 per input frame) while still being an integral multiple
of the standard Warp size (i.e. 32).

5.2. LoCATe Features Description

The LoCATe descriptor characterizes image patches, the size of which is provided by the feature
detector. As described in Section 2, LoCATe is fundamentally based on the description of two image
properties: color and texture. Those properties are extracted from each individual feature patch’s
Block formulating two main description vectors (24-Bin Color Vector and 6-bin Texture Vector).
Those vectors are firstly combined in order to produce a Block description vector and later to create
the patch’s description histogram. With the aim to provide more efficiency to the computations,
we slightly change the description procedure and we treat each image patch as a single Block,
drastically reducing the computational complexity and omitting the Blocks’ histograms addition
and normalization procedures of the original implementation. As it was proven by our previous
work [32], the most computationally demanding part of the process is the calculation of the average
values between each one of the color and grayscale channels. Using the initialization steps described
above, those values can be computed very efficiently justifying the selected approach.

5.2.1. Color Information Extraction: In order to formulate the required Color Histograms, the
average HSV values for each patch is required. Thus, we first need to calculate the sums between
every color channel in the RGB color-space, find the respective average values and then convert
them to the HSV domain. Using one Thread for each feature point, the Color Information Extraction
Kernel can be computed by Algorithm 1. Note that � denotes the bitwise “shift-right” operation.
The algorithm makes perfect use of the created RGB Integral Images downgrading one of the most
computationally demanding procedures of LoCATe to some few operations, all of them executed
in parallel. Note that all Global memory accesses are aligned with the Threads’ indexes, while
the 2D-neighboring memory read operations are greatly benefited by the offered caching since the
RGB Integral Texture was utilized.

With the average HSV values per feature patch in hand, we now proceed to the formulation
of the Color Histograms. For every LoCATe descriptor two kinds of vectors are required, one
referring to the absolute color information and one to the brightness information. Both of those
vectors are obtained based on the same notion of Fuzzy Linking and thus they are addressed by a
common solution. We follow our previous proposal presented in [32] and we make use of a Parallel
Participation Identifier (PPI) which is capable of determining the membership (or not) of a given
value to some specific sub-region of a range in constant-time. Assuming a value range V = [v0, ve]
and m sub-regions Rj , j ∈ [0,m− 1], the problem in hand refers to the association of an input query
value q with one of the regions Rj . The serialized version of a Participation Identifier is obliged
to compare the value of q with each one of the sub-regions’ limits one after another in order to
determine its membership. On the contrary PPI make these checks in parallel by assigning each sub-
region to one individual Thread. Thus, only two checks need to be performed by each Thread (lower
and upper bound per sub-region) regardless the multitude of sub-regions. The output of a PPI engine
for a given patch pi is a column vector f v̂

i of size m, whose values (fvij) represent the participation
of q in Rj as defined by the corresponding membership functions. The sub-regions’ limits are stored
in the Constant memory allowing different Threads to access the same values simultaneously. The
two instances of PPI (color and brightness) are executed using two asynchronous Kernels. On the
one hand, the fuzzy linker producing the absolute color information histogram contains 48 possible
sub-region participations (8 for H, 2 for S and 3 for V) and thus a total of [512× 48] Threads are
utilized. On the other hand, for the case of the brightness histogram, the possible participation sub-
regions are 4 (2 for S and 2 for V) meaning that [512× 4] Threads are required. At this point our
choice for retaining the most prominent 512 SURF feature points is clarified. Since each one of

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe



12 L. BAMPIS, ET AL.

Algorithm 1 The Color Averaging Kernel.
Require: RGB Integral Texture[ , , , ]: 3D Texture binded on RGB Integral Images
Require: X[ ]: X axis coordinates per feature point
Require: Y [ ]: Y axis coordinates per feature point
Require: Size[ ]: sizes per feature point patch
Output: avgH vector: average H values per feature point patch
Output: avgS vector: average S values per feature point patch
Output: avgV vector: average V values per feature point patch

1: for all threadIDx.x, x ∈ [0, 511] ∩N do in parallel
2: x = X[threadIDx.x]
3: y = Y [threadIDx.x]
4: size = Size[threadIDx.x]
5: size div = size� 1
6: sumR = getSum (x, y, size div, 0)
7: sumG = getSum (x, y, size div, 1)
8: sumB = getSum (x, y, size div, 2)
9: size sq = size ∗ size

10: avgR = sumR/size sq
11: avgG = sumG/size sq
12: avgB = sumB/size sq
13: [avgH, avgS, avgV ] = rgb2hsv (avgR, avgG, avgB)
14: avgH vector[threadIDx.x] = avgH
15: avgS vector[threadIDx.x] = avgS
16: avgV vector[threadIDx.x] = avgV
17: end for

Function getSum (x, y, size div, color)

1:

sum = RGB Integral Texture[x + size div, y + size div, color]+

+ RGB Integral Texture[x− size div, y − size div, color]−
−RGB Integral Texture[x + size div, y − size div, color]−
−RGB Integral Texture[x− size div, y + size div, color]

2: return sum

the aforementioned Kernels is executed by a set of Threads whose multitude is an integral multiple
of 512, the whole device is occupied utilizing all the available resources. Slightly alternating the
original approach, the computed from PPI vectors (cv̂i for the color and bv̂

i for the brightness
information) are not combined in this step so as to create the 24-Bin Color Vector, since we found
that this procedure can be included in the histogram quantization unit with less computational steps,
as to be described in the following subsections. Finally, note that the output storing format of those
vectors can be visualized with the following row-major arrays:

cv̂ =
[

cv̂0 cv̂1 ... cv̂511
]

bv̂ =
[

bv̂
0 bv̂

1
... bv̂

511
]

(12)

, meaning that for both cases, the sequentially stored values are those of fv
i
j , fv

i+1
j , fv

i+2
j ,

etc (f ∈ {c, b}). This feature is induced by the Threads memory accessing pattern (sequentially
indexed Threads is preferred to access sequential memory addresses) and greatly reduces the write
operations’ latency, even though it deviates from a straightforward notion.

5.2.2. Texture Information Extraction: The second main description step of LoCATe refers to the
extraction of texture information from the detected feature patches. To that end, LoCATe divides

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe



A LOCATE-BASED VISUAL PLACE RECOGNITION SYSTEM FOR MOBILE ROBOTICS AND GPGPUS 13

Algorithm 2 The Gray-scale Averaging Kernel.
Define: offsetX[ ] = {0, 1, 0, 1,−1, 0,−1, 0, 0, 1, 0, 1,−1, 0,−1, 0}
Define: offsetY [ ] = {0, 0, 1, 1,−1,−1, 0, 0,−1,−1, 0, 0, 0, 0, 1, 1}
Require: Gray Integral Texture[ , ]: 2D Texture binded on the gray-scale Integral Image
Require: X[ ]: X axis coordinates per feature point
Require: Y [ ]: Y axis coordinates per feature point
Require: Size[ ]: sizes per feature point patch
Output: avgG vector: average gray-scale values per feature point patch

1: for all threadIDx.x/y, x ∈ [0, 511] ∩N, y ∈ [0, 3] ∩N do in parallel
2: x = X[threadIDx.x]
3: y = Y [threadIDx.x]
4: size = Size[threadIDx.x]
5: size div = size� 1

6:
sumG = RGB Integral Texture[x + size div ∗ offsetX[threadIDx.y],

y + size div ∗ offsetY [threadIDx.y]]

7:
sumG = +RGB Integral Texture[x + size div ∗ offsetX[threadIDx.y + 4],

y + size div ∗ offsetY [threadIDx.y + 4]]

8:
sumG = −RGB Integral Texture[x + size div ∗ offsetX[threadIDx.y + 8],

y + size div ∗ offsetY [threadIDx.y + 8]]

9:
sumG = −RGB Integral Texture[x + size div ∗ offsetX[threadIDx.y + 12],

y + size div ∗ offsetY [threadIDx.y + 12]]
10: size sq = size ∗ size
11: avgG = sumG/size sq
12: avgG vector[512 ∗ threadIDx.y + threadIDx.x] = avgG
13: end for

the patches (pi) into 4 equal Sub-Blocks (Bi
j , i ∈ [0, 511] and j ∈ [0, 3]) and calculates the average

gray-scale value for each one of them (B̄i
j). Given the initialization steps required by the detection of

SURF features, the most computationally demanding step of this procedure can now be calculated
with low cost by means of Algorithm 2. The corresponding Kernel is executed using [512× 4]
Threads utilizing once more all the GPU’s resources. Note that the Global memory accesses are
once more coalesced, while the employed Texture caching reduces the memory’s latency in cases
of read operations from 2D-neighboring regions (i.e. the Integral Image patches). We chose to
store the offsetX and offsetY vectors in the Constant memory only once in the beginning of
our application, allowing multiple Threads to access the same memory addresses simultaneously
without reducing the performance. The output of this procedure is one vector (stored in the Global
memory) containing the calculated gray-scale average values for each Sub-Block of every detected
patch pi: avgG vector =

[
B̂0, B̂1, B̂2, B̂3

]
, where B̂j =

[
B̄0

j , B̄
1
j , ..., B̄

i
j , ..., B̄

511
j

]
.

In order to numerically interpret the texture information, LoCATe applies a set of 5 different
filtering masks on each detected patch. The obtained filter responses are then thresholded
determining if the patch can be considered as member of a respective edge directivity class or if
it is of non-texture. Thus, one individual Thread is utilized for every one of the 512 detected feature
patches, undertaking the calculation of every mask’s response. The Kernel produces 512 binary
column vectors tv̂

i of size 6, the values of which (tvij) declares the patch’s membership (or not)
to one of the five texture classes (j ∈ [1, 5]) or to the texture-less one (j = 0). For an instance of
patch pi, if the maximum mask response does not overcome a predefined threshold Tm, the value
of tv

i
0 becomes one, while the rest of vector tv̂

i is zeroed. Otherwise, the respective responses
are normalized by the maximum and compared with the corresponding thresholds formulating the
membership vector tv̂

i. One may argue that in this step the calculation of each mask’s response
could be performed simultaneously using 5 different Threads per patch. In that case, even though

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe



14 L. BAMPIS, ET AL.

Algorithm 3 The Gray-scale Averaging Kernel.

Require: cv̂: stored row-major array containing the cv̂i vectors in its columns
Require: bv̂: stored row-major array containing the bv̂

i vectors in its columns
Require: tv̂: stored row-major array containing the tv̂

i vectors in its columns
Output: dv̂: stored row-major array containing the dv̂

i vectors in its columns

1: for all blockIDx.x/y, x ∈ [0, 7] ∩N, y ∈ [0, 7] ∩N do in parallel
2: for all threadIDx.x/y, x ∈ [0, 511] ∩N, y ∈ [0, 2] ∩N do in parallel
3: if tv̂[blockIDx.x] == 0 then

4:
value =cv̂[512 ∗ threadIdx.y + threadIDx.x]∗

∗tv̂[512 ∗ blockIDx.y + threadIDx.x]
5: else

6:

value =bv̂[512 ∗ threadIdx.y + threadIDx.x]∗
∗cv̂[512 ∗ (blockIDx.x + 2) + threadIDx.x]∗
∗tv̂[512 ∗ blockIDx.y + threadIDx.x]

7: end if
8: j = blockIDx.y ∗ 24 + blockIDx.x ∗ 3 + threadIdx.y
9: dv̂[512 ∗ j + threadIDx.x] = value

10: end for
11: end for

less steps are required to be executed by each Thread, there is no efficient way to identify the
maximum response without violating the SIMT architecture. Additionally, the color and texture
Kernels are asynchronous with each other and thus executed simultaneously on the Device. This
essentially means that even if we assign more Threads to the Kernel, their execution will be
serialized (on some extend) since the GPU will always be fully occupied. Finally, the vectors tv̂

i

are stored with an array row-major format of:

tv̂ =
[

tv̂
0 tv̂

1
... tv̂

511 ] (13)

for the same reasons described in Section 5.2.1.

5.2.3. Description Histogram Formulation and Quantization: The final processing step of LoCATe
includes the combination of vectors cv̂i, bv̂

i and tv̂
i from each feature patch pi into a total

description histogram dv̂
i. Subsequently, this histogram is quantized forming a final description

vector Lv̂
i.

Algorithm 3 describes the procedure for combining the histograms and creating one dv̂ array. This
array is stored in a row-major format and contains the dv̂

i column vectors with equivalent structure
to the ones of eq. 12 and 13. The specification of this algorithm is that it calculates one LoCATe
value simultaneously for every feature patch. The Kernel is executed by 8× 8 Thread Blocks of
512× 3 Threads each. The threadIdx.x indexing dimension of every Thread determines the i-th
column of each respective array F v̂

i (F = {c, b, t}), while the rest of the employed indexing terms
(threadIdx.y, blockIDx.x and blockIDx.y) are responsible for defining the corresponding row
(F v̂i

j). As defined by LoCATe, the first three values of each cv̂i do not depend on the bv̂
i ones and

thus, they are just copied to the final description histogram.
With the dv̂ in hand, we choose to address the quantization procedure with another PPI engine.

A total of [8× 144] Threads are assigned for each one of the 512 dv̂i histograms, determining the
participation of every bin to one of quantization levels. The output of this procedure is the final
Lv̂ array which contains the LoCATe descriptors for all the detected feature points. In order to
be efficiently accessed by the Host, this array is transposed [49] (so as to contain one LoCATe
descriptor in every row) and transferred to the CPU memory.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe



A LOCATE-BASED VISUAL PLACE RECOGNITION SYSTEM FOR MOBILE ROBOTICS AND GPGPUS 15

Table I. Details of the used datasets.

Dataset Description Camera position Image size Number of Images

Lip6 Indoor Indoors
Static Frontal 240×192 388

Lip6 Outdoor Outdoors
Slightly dynamic Frontal 240×192 531

Malaga 2009
Parking 6L

Outdoors
Slightly dynamic Frontal 1024×768 3474

City Centre Outdoors, Urban
Dynamic Lateral 640×480 1237

Figure 6. An instance of our on-line vPR application running on Google’s Project Tango development kit.

5.3. DBoW2

A loop closure detection system requires a constant image stream as an input. Each time a new frame
is acquired, the aforementioned steps are performed on the Device meaning that the Host remains
idle. As in [50, 51, 52], we adopt a pipeline architecture in order to utilize all of the device’s available
resources. Using two Host threads, during the GPU-based SURF features detection and LoCATe
descriptors formulation from image i, we assign to the CPU all processing steps required to detect a
possible loop closure event between the image i− 1 and the database. Thus, the computational time
required by the rest of the DBoW2 algorithm, liberated from the feature detection and description
part, is overlaid by the parallel algorithm described in the previous subsections.

6. EXPERIMENTAL RESULTS

In this section, an experimental evaluation of our whole system is provided. The goal of our proposal
is to provide a vPR place recognition system capable of running in real time even in the case of a
low power mobile device. For this reason, we tested our algorithm measuring both its accuracy
on detecting loop closure events and the achieved execution time. The obtained results justify our
choice for adopting the local description of LoCATe for every one of the assessed datasets.

6.1. Experimental Protocol

Four different testing datasets were used in order to validate our algorithm, namely Lip6 Indoor
[10], Lip6 Outdoor [10], Malaga 2009 Parking 6L [53] and City Centre [8]. Table I contains their
brief description. One of the main restrictions that we considered during our choice of testing cases

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe



16 L. BAMPIS, ET AL.

Table II. Average execution time for each one of the tested datasets.

Average Time (ms/frame)

Lip6 Indoor Lip6 Outdoor Malaga 2009
Parking 6L City Centre

SURF
Detection

Serial Version 148.4 147.2 461.1 316.7

Parallel Version 4.4 4.3 14.5 10.1

LoCATe
Description

Serial Version 41.1 41.7 41.9 41.2

Parallel Version 4.7 4.7 4.6 4.7

DBoW2
(- BRIEF) Serial Version 9.8 10.1 12.9 11.5

Whole
algorithm

Serial Version 199.4 199.2 516.0 368.8

Parallel Version 10.5 10.7 19.7 15.4

Figure 7. Achieved speedup of the proposed parallel pipeline over every assessed dataset.

was that each dataset should contain colored images and not gray-scale ones in order for LoCATe
to be applicable.

Our algorithm was designed with the strict specification of being able to run on a mobile device in
real-time (meaning that the output is calculated faster or in equal time with the frequency induced by
a key-frame SLAM system [4, 5, 54]). Our timing experiments were conducted on the Tablet device
provided by Google’s Project Tango [33]. This device contains a GPU based on the NVIDIA’s
Kepler architecture, as well as an ARMv7 CPU. The onboard camera can be used to acquire the
necessary input image stream and the detected loop closing pairs of frames can be displayed on the
screen as the user is moving. Figure 6 contains an instant of our running application.

As a means of measuring the achieved vPR performance for the conducted experiments, the
Precision-Recall curves were utilized. As a reminder, the Precision term is defined as the ratio
between true-positive loop closure detection and the total number of detections returned by our
system. Furthermore, Recall is defined as the ratio between true-positive detections and the total
number of loop closure events that a testing dataset contains. An accurate vPR system should
achieve as high Recall rates as possible for 100% Precision since the inclusion of a false-positive
detection will most probably worsen the SLAM output.

Aiming to strengthen our proposal, we compare our approach with the ones presented in [12] and
[10]. The first one corresponds to the DBoW2 algorithm (the one that we based our work on), while

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe



A LOCATE-BASED VISUAL PLACE RECOGNITION SYSTEM FOR MOBILE ROBOTICS AND GPGPUS 17

Recall (%)
0 10 20 30 40 50 60 70 80 90 100

P
re
ci
si
o
n
(%

)
50

60

70

80

90

100

Lip6 Indoor
Lip6 Outdoor
Malaga 2009 Parking 6L
City Centre
thn = 0:45

Figure 8. Precision-Recall curves achieved by our technique for every tested dataset.

the second one can be characterized as notably relevant to our technique since it also includes color
information to the description. Note that the corresponding timing and accuracy results were pulled
straightforwardly from the respective methods’ papers.

6.2. Timing Results

In order to test the efficiency of our parallel algorithm, a CPU-only version of the proposed
LoCATe-based vPR method was also implemented. This version serves as a reference point,
determining the time that the approach would require if no GPGPU parallelization was applied.
The average timing results for both parallel and serial versions are illustrated in Table II. Each one
of the main processing steps was timed for every testing dataset. Note that the timings labeled
as “DBoW2 (- BRIEF)” corresponds to the processing steps that DBoW2 requires excluding
the BRIEF features detection and description. The used datasets contain frames with different
resolutions. This characteristic only affects the computations corresponding to the SURF feature
detection. The rest of the method’s steps are performed only among the 512 most prominent
SURF feature patches implying a relatively constant-time output. It should also be noticed that
the timings corresponding to the CPU’s calculations are not perceptible by the total execution
time of the parallel version due to the employed pipelining. Figure 7 presents the overall speedup
that we obtained through the algorithm’s parallelization for each dataset. “S-LoCATe-based / P-
LoCATe-based” corresponds to the speedup we obtained over the serialized version of the proposed
algorithm, “DBoW2 / P-LoCATe-based” to the speedup over the original DBoW2 [12] method
and “SIFT+Color / P-LoCATe-based” over the method presented in [10]. As it can be seen, our
approach presents a stable improvement of the vPR efficiency for all tested image sizes. In addition,
the reader should note that timing results regarding the DBoW2 method are only available for the
Malaga 2009 Parking 6L and City Centre datasets. Correspondingly, [10] only offers timing results
for the Lip6 Indoor and Lip6 Outdoor cases.

6.3. System’s Accuracy

In order to measure the proposed system’s accuracy via Precision-Recall metrics, a loop closure
ground truth is required. Datasets Lip6 Indoor, Lip6 Outdoor and City Centre provide this
information by indicating the image pairs that are considered to observe the same content. For
the case of Malaga 2009 Parking 6L though, no such ground truth is provided. Thus, for this dataset
we hand-picked all the loop closure events that could be visually identified by a human so as to
distinguish the true-positive from the false-positive detections of our algorithm. Figure 8 presents
the Precision-Recall curves for all the testing cases that we obtained by varying threshold thn.
Considering the general case, using a threshold value of thn = 0.45 results to the highest Recall
rates for 100% Precision in every assessed scenario. Yet, in a real application scenario, one can
adjust threshold thn to the most beneficial value.

As it was stated by [31], characterizing a frame as an aggregation of local feature descriptors
produces more robust image matching results than a global image descriptor. In order to confirm

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe



18 L. BAMPIS, ET AL.

Table III. Comparative accuracy results between the tested vPR approaches.

Recall rates (for 100% Precision accuracy)

Lip6 Indoor Lip6 Outdoor Malaga 2009
Parking 6L City Centre

CEDD-based 24.48% 15.56% 43.71% 21.64%

LoCATe-based 37.92% 23.60% 68.02% 36.24%

Original DBoW2 [12] N/A N/A 74.75% 30.61%

Angeli et al. [10] 36.86% 23.59% N/A N/A

this argument in the field of vPR, we formulated another experiment testing the effect of a global
descriptor to the loop closure detection task. For this experiment, instead of a LoCATe-based VWV,
we computed one CEDD descriptor for each input image and tried to detect the loop closing pairs
of frames using its 144bin description vector. Table III contains the Recall results, corresponding
to 100% precision, for the LoCATe-based, CEDD-based, the original DBoW2 and the method
proposed in [10] on every tested dataset. As it can be seen, the localized approach constantly
outperforms the global descriptor and the technique of [10] on every available case. Regarding the
original DBoW2 approach, which was based on the description of BRIEF, our algorithm produced
more accurate results in the case of City Centre dataset, but it was not able to detect as many loop
closure events in the Malaga 2009 Parking 6L one. Even though DBoW2 performed better in the last
case, it also induces higher execution time (an average of 21.6ms on an Intel Core i7 @ 2.67GHz
machine [12]), making our method a better choice when the operational frequency is crucial. Finally,
Fig. 9 visualizes the loop closing camera pairs detected by the proposed LoCATe-based vPR system,
projected over the robot’s executed trajectories§.

7. CONCLUSION AND FUTURE WORK

In this work a novel parallel vPR algorithm was proposed, using GPGPU computing, capable
of running on the Google’s project Tango device in real-time. Instead of relying on a global
descriptor, a bottom-up approach was adopted based on the description of local features. The most
computationally demanding steps for detecting and describing the feature points were assigned to
the GPU, while the CPU undertook all the calculations required for matching between the images.
Using a pipeline scheme, the two available processing units can work in parallel, making sure that
all the device’s resources are utilized. Finally, our choice of combining SURF and LoCATe grants a
highly efficient parallel implementation, since those methods contain some common computational
steps.

A loop closure detection engine can be used in order to assist the SLAM output accuracy.
Therefore, the authors’ future plans involve the development of an onboard monocular SLAM
system, based on the description of LoCATe, fully compatible with the presented vPR technique.
Such a system is expected to induce more computationally demanding modules, and thus further
investigation is required in order to define the most appropriate components that the GPU should
undertake.

ACKNOWLEDGEMENT

§Note that the datasets Lip6 Indoor and Lip6 Outdoor do not provide any odometry information and thus they are
excluded from Fig. 9.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe



A LOCATE-BASED VISUAL PLACE RECOGNITION SYSTEM FOR MOBILE ROBOTICS AND GPGPUS 19

(a) Malaga 2009
Parking 6L

(b) City Centre

Figure 9. Detected loop closures. The respective camera poses are marked with red.

Special thanks to Nektarios Anagnostopoulos, one of the co-developers of LIRE [55] library, for kindly
providing us with the reference LoCATe feature detection code.

REFERENCES

1. Folkesson J, Christensen H. Graphical SLAM-a self-correcting map. In Proc. IEEE Int. Conf. on Robotics and
Automation, vol. 1, 2004; 383–390.

2. Thrun S, Montemerlo M. The graph SLAM algorithm with applications to large-scale mapping of urban structures.
The Int. J. of Robotics Research 2006; 25(5-6):403–429.

3. Grisetti G, Kümmerle R, Stachniss C, Burgard W. A tutorial on graph-based SLAM. Intelligent Transportation
Systems Magazine 2010; 2(4):31–43.

4. Strasdat H, Montiel J, Davison AJ. Scale drift-aware large scale monocular SLAM. In Proc. Robotics: Science and
Systems, vol. 2, 2010; 5.

5. Mei C, Sibley G, Cummins M, Newman PM, Reid ID. A constant-time efficient stereo SLAM system. In Proc.
British Machine Vision Conf., 2009; 1–11.

6. Williams B, Cummins M, Neira J, Newman P, Reid I, Tardós J. A comparison of loop closing techniques in
monocular SLAM. Robotics and Autonomous Systems 2009; 57(12):1188–1197.

7. Nister D, Stewenius H. Scalable recognition with a vocabulary tree. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition, vol. 2, 2006; 2161–2168.

8. Cummins M, Newman P. Fab-map: Probabilistic localization and mapping in the space of appearance. The Int. J. of
Robotics Research 2008; 27(6):647–665.

9. Cummins M, Newman P. Appearance-only SLAM at large scale with FAB-MAP 2.0. The Int J. of Robotics Research
2011; 30(9):1100–1123.

10. Angeli A, Filliat D, Doncieux S, Meyer JA. Fast and incremental method for loop-closure detection using bags of
visual words. IEEE Transactions on Robotics 2008; 24(5):1027–1037.

11. Schindler G, Brown M, Szeliski R. City-scale location recognition. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition, 2007; 1–7.

12. Gálvez-López D, Tardós JD. Bags of binary words for fast place recognition in image sequences. IEEE Transactions
on Robotics 2012; 28(5):1188–1197.

13. Gálvez-López D, Tardós JD. DBoW2: Enhanced hierarchical bag-of-word library for C++ 2012. URL http:
//doriangalvez.com/software.

14. Mur-Artal R, Tardós JD. Fast relocalisation and loop closing in keyframe-based slam. In Proc. IEEE Int. Conf. on
Robotics and Automation, 2014; 846–853.

15. Collier J, Se S, Kotamraju V. Multi-sensor appearance-based place recognition. In Proc. IEEE Int. Conf. on
Computer and Robot Vision, 2013; 128–135.

16. Kim DH, Kim JH. Visual loop-closure detection method using average feature descriptors. Springer Robot
Intelligence Technology and Applications 2. Springer, 2014; 113–118.

17. Lowe DG. Distinctive image features from scale-invariant keypoints. Int. J. of Computer Vision 2004; 60(2):91–110.
18. Bay H, Tuytelaars T, Van Gool L. SURF: Speeded Up Robust Features. In Proc. European Conf. on Computer

Vision. Springer, 2006; 404–417.
19. Rublee E, Rabaud V, Konolige K, Bradski G. ORB: an efficient alternative to SIFT or SURF. In Proc. IEEE Int.

Conf. on Computer Vision, 2011; 2564–2571.
20. Alahi A, Ortiz R, Vandergheynst P. Freak: Fast retina keypoint. In Proc. IEEE Conf. on Computer Vision and Pattern

Recognition, 2012; 510–517.
21. Churchill W, Newman P. Continually improving large scale long term visual navigation of a vehicle in dynamic

urban environments. In Proc. IEEE Int. Conf. on Intelligent Transportation Systems, 2012; 1371–1376.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

http://doriangalvez.com/software
http://doriangalvez.com/software


20 L. BAMPIS, ET AL.

22. Sünderhauf N, Neubert P, Protzel P. Are we there yet? Challenging SeqSLAM on a 3000 km journey across all four
seasons. In Proc. IEEE Int. Conf. on Robotics and Automation, Workshop on Long-Term Autonomy,, 2013.

23. McManus C, Upcroft B, Newman P. Learning place-dependant features for long-term vision-based localisation.
Autonomous Robots 2015; 39(3):363–387.

24. Arroyo R, Alcantarilla PF, Bergasa LM, Romera E. Towards life-long visual localization using an efficient matching
of binary sequences from images. In Proc. IEEE Int. Conf. on Robotics and Automation, 2015; 6328–6335.

25. Yang X, Cheng KTT. Local difference binary for ultrafast and distinctive feature description. IEEE Transactions on
Pattern Analysis and Machine Intelligence 2014; 36(1):188–194.

26. Sunderhauf N, Shirazi S, Jacobson A, Dayoub F, Pepperell E, Upcroft B, Milford M. Place recognition with
ConvNet landmarks: Viewpoint-robust, condition-robust, training-free. In Proc. Robotics: Science and Systems,
MIT Press: Rome, Italy, 2015.

27. Sünderhauf N, Shirazi S, Dayoub F, Upcroft B, Milford M. On the performance of ConvNet features for place
recognition. In Proc. IEEE Int. Conf. on Intelligent Robots and Systems, 2015; 4297–4304.

28. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In Proc.
Advances in neural information processing systems, 2012; 1097–1105.

29. Arroyo R, Alcantarilla PF, Bergasa LM, Romera E. Fusion and binarization of CNN features for robust topological
localization across seasons. In Proc. IEEE Int. Conf. on Intelligent Robots and Systems, 2016.

30. Chatzichristofis SA, Boutalis YS. CEDD: Color and Edge Directivity Descriptor: A compact descriptor for image
indexing and retrieval. Int. Conf. on Computer Vision Systems 2008; :312–322.

31. Iakovidou C, Anagnostopoulos N, Kapoutsis AC, Boutalis Y, Chatzichristofis SA. Searching images with MPEG-7
(& MPEG-7-like) powered localized descriptors: the SIMPLE answer to effective content based image retrieval. In
Proc. IEEE Int. Workshop on Content-Based Multimedia Indexing, 2014; 1–6.

32. Iakovidou C, Bampis L, Chatzichristofis SA, Boutalis YS, Amanatiadis A. Color and Edge Directivity Descriptor
on GPGPU. In Proc. IEEE Int. Conf. on Parallel, Distributed and Network-Based Processing, 2015; 301–308.

33. Google project tango. URL https://www.google.com/atap/projecttango/#project.
34. Chatzichristofis S, Zagoris K, Boutalis Y, Papamarkos N. Accurate image retrieval based on compact composite

descriptors and relevance feedback information. Int. J. of Pattern Recognition and Artificial Intelligence 2010;
24(2):207–244.

35. Manjunath B, Ohm J, Vasudevan V, Yamada A. Color and texture descriptors. IEEE Transactions on circuits and
systems for video technology 2001; 11(6):703–715.

36. Calonder M, Lepetit V, Strecha C, Fua P. BRIEF: Binary Robust Independent Elementary Features. In Proc.
European Conf. on Computer Vision, 2010; 778–792.

37. RAWSEEDS. Robotics Advancement through Web-publishing of Sensorial and Elaborated Extensive Data Sets
(Project FP6-IST-045144) 2007-2009. URL http://www.rawseeds.org/rs/datasets.

38. Arthur D, Vassilvitskii S. k-means++: The advantages of careful seeding. In Proc. Symp. on Discrete algorithms,
2007; 1027–1035.

39. Sivic J, Zisserman A. Video google: A text retrieval approach to object matching in videos. In Proc. IEEE Int. Conf.
on Computer Vision, 2003; 1470–1477.

40. Bampis L, Amanatiadis A, Gasteratos A. Encoding the description of image sequences: A two-layered pipeline for
loop closure detection. In Proc. IEEE Int. Conf. on Intelligent Robots and Systems, 2016; 4530–4536.

41. CUDA by NVIDIA. URL http://www.nvidia.com/object/cuda_home_new.html.
42. Hwu WM, Rodrigues C, Ryoo S, Stratton J. Compute unified device architecture application suitability. Computing

in Science & Engineering 2009; 11(3):16–26.
43. NVIDIA Corporation. Cuda online programming guide. 2013. URL http://docs.nvidia.com/cuda/

cuda-c-programming-guide/.
44. Terriberry TB, French LM, Helmsen J. GPU accelerating speeded-up robust features. In Proc. IEEE Int. Symp. on

3D Data Processing, Visualization and Transmission, 2008; 355–362.
45. Blelloch GE. Prefix sums and their applications. Carnegie Mellon University School of Computer Science, Tech.

Rep. CMU-CS-90-190 1990; .
46. Cornwall J, Kelly P. Efficient multiple pass, multiple output algorithms on the gpu. In Proc. European Conf. on

Visual Media Production, 2005; 253–262.
47. Zhu F, Chen P, Yang D, Zhang W, Chen H, Zang B. A GPU-based high-throughput image retrieval algorithm. In

Proc. ACM General Purpose Processing with Graphics Processing Units, 2012; 30–37.
48. Fang Z, Yang D, Zhang W, Chen H, Zang B. A comprehensive analysis and parallelization of an image retrieval

algorithm. In Proc. IEEE Int. Symp. on Performance Analysis of Systems and Software, 2011; 154–164.
49. Ruetsch G, Micikevicius P. Optimizing matrix transpose in CUDA. Nvidia CUDA SDK Application Note 2009; 28.
50. Bampis L, Iakovidou C, Chatzichristofis SA, Boutalis YS, Amanatiadis A. Real-time indexing for large image

databases: color and edge directivity descriptor on GPU. Springer The J. of Supercomputing 2015; 71(3):909–937.
51. Amanatiadis A, Bampis L, Gasteratos A. Accelerating single-image super-resolution polynomial regression in

mobile devices. IEEE Transactions on Consumer Electronics 2015; 61(1):63–71.
52. Amanatiadis A, Bampis L, Gasteratos A. Accelerating image super-resolution regression by a hybrid

implementation in mobile devices. In Proc. IEEE Int. Conf. on Consumer Electronics, 2014; 335–336.
53. Blanco JL, Moreno FA, Gonzalez J. A collection of outdoor robotic datasets with centimeter-accuracy ground truth.

Autonomous Robots 2009; 27(4):327–351.
54. Davison AJ, Reid ID, Molton ND, Stasse O. MonoSLAM: Real-time single camera SLAM. IEEE Transactions on

Pattern Analysis and Machine Intelligence 2007; 29(6):1052–1067.
55. Lux M, Chatzichristofis SA. Lire: lucene image retrieval: an extensible java cbir library. In Proc. Int. Conf. on

Multimedia, 2008; 1085–1088.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

https://www.google.com/atap/projecttango/#project
http://www.rawseeds.org/rs/datasets
http://www.nvidia.com/object/cuda_home_new.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/

	1 Introduction
	2 LoCATe: the localized version of CEDD
	2.1 The Detection Stage
	2.2 The Description Stage
	2.2.1 Color Extraction Unit:
	2.2.2 Texture Extraction Unit:
	2.2.3 Producing the LoCATe descriptor:


	3 Visual Place Recognition: LoCATe-based DBoW2
	4 GPGPU Terminology
	5 GPGPU Implementation
	5.1 Initialization Steps
	5.1.1 Data Re-Arrangement:
	5.1.2 RGB Integral Images Formulation:
	5.1.3 Gray-scale Integral Image Formulation:
	5.1.4 SURF Feature Patches Detection:

	5.2 LoCATe Features Description
	5.2.1 Color Information Extraction:
	5.2.2 Texture Information Extraction:
	5.2.3 Description Histogram Formulation and Quantization:

	5.3 DBoW2

	6 Experimental Results
	6.1 Experimental Protocol
	6.2 Timing Results
	6.3 System's Accuracy

	7 Conclusion and Future Work

